
The ionisation equation in a relativistic gas

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 2347

(http://iopscience.iop.org/0305-4470/16/10/029)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 16:17

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 16 (1983) 2347-2351. Printed in Great Britain 

The ionisation equation in a relativistic gas 

S Kichenassamyf and R A Krikoriant 
i. Laboratoire de Physique Theorique, Equipe de Recherche Associee au CNRS No 533, 
11, rue P et M Curie, 75231 Paris Cedex 05, France 
$ Laboratoire d'Astrophysique Theorique du College de France, lnstitut d'Astrophysique, 
98 bis Bld Arago, 74014 Paris, France 

Received 30 November 1982, in final form 1 March 1983 

Abstract. By deriving the relativistic form of the ionisation equation for a perfect gas it 
is shown that the usual Saha equation is valid to 3% for temperatures below one hundred 
million Kelvin. Beyond 1 0 9 K ,  the regular Saha equation is seriously incorrect and a 
relativistic distribution function for electrons must be taken into account. Approximate 
forms are derived when only the electrons are relativistic (appropriate up to lo'* K) and 
also for the ultrarelativistic case (temperatures greater than 10'' K). 

1. Introduction 

The ionisation equation has achieved substantial progress by relating the main line 
of the spectral sequence and luminosity effects in stellar spectra to the stellar tem- 
perature as well as to the electronic pressure. Although this theory gives very good 
results in many actual astrophysical situations, the case where the prevailing conditions 
are relativistic deserves fuller study, especially with respect to the electron gas; this 
may have some interest in the study of compact sources (Jones and Hardee 1979, 
Gould 1981) and would define the limits of validity of the non-relativistic formula. 

The ionisation equation has been derived by Saha (1920, 1921) from thermo- 
dynamical considerations, by Fowler (1923, 1955) with the aid of statistical mechanics 
and without using the entropy concept, and by Menzel (1933) in a simplified version 
using Boltzmann's law of distribution of atoms in different energy states. We derive 
here the relativistic generalisation of the Saha equation by using the concepts and 
methods developed by Synge (1957) in the study of a relativistic gas mixture and 
introducing the most probable state by means of the same considerations as those 
used in the non-relativistic case by Aller (1963). 

We give in 9: 2 the derivation of the relativistic ionisation equation in the simple 
case of a gas consisting of neutral atoms in their lowest state, singly ionised atoms 
and electrons; we exhibit in 3: 3 the limiting cases of the formula so obtained and in 
concluding remarks ($4 )  we examine the limits of validity of the non-relativistic 
formula. 

2. The ionisation equation 

We consider the thermal equilibrium of a gas mixture of three components: neutral 
atoms A of proper mass m l  in their lowest state, free ions A' of proper mass m 2  and 
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electrons e of proper mass m3 in dissociative equilibrium according to 

A ' + e S A .  (2.1) 
In a given phase of the gas there will be v1  neutral atoms, v2 free ions and v 3  electrons 
subject to the conditions 

(2.2) 

Let us denote by NA (A  = 1, 2, 3) the distribution functions of the atoms, ions 
and electrons respectively. For a small target of three-volume dS normal to a unit 
time-like vector U' (u'u, = -1) we have the occupation numbers 

(2.3) 

where d n A i  defines for the state i of each type of particle an infinitesimal cell of the 
momentum three-space orthogonal to U'; it is assumed to have the same content for 
all types of particles, so that we may compare their relative probabilities. If GAi 
denote the statistical weights of the gas components in the state i ,  

(2.4) 

where gA is the individual weight of the particle A and h 3  the unit phase volume 
(Joos 1959, Sommerfeld 1964), the number W of permutabilities is given by 

X = v1  + v 2  = constant, Y = v 1  + v3 =constant. 

v~~ = NA dS dRA; 

G A ;  = gA dS dnAi/h 

The equilibrium state, i.e. the most probable state, corresponds to the maximum of 
W or of the entropy integral. GA; and vAi are assumed to be very large so that the 
Stirling approximation may be used. Thus, taking into account (2.2), we get 

d log W = - [log(Nlh 3/g1) + 21 dN1 

- [10g(N2h 3/g2) + 11 dN2 - [log(N3h 3/g3) + 13 dN3 = 0. (2.6) 

This equation must be satisfied along with three other constraints, in thermal equili- 
brium; two of them are obtained from (2.2) and (2.3), keeping the phase cells the 
same during the variation of NA; the third constraint comes out from the conservation 
of the total four-momentum. Varying NA and introducing the six Lagrange multipliers 
a,  p and [', we have 

NA = CA exp(S'P,) ( 2 . 7 ~ )  
where P, is the four-momentum of a typical particle and 

C1= (g1/h3) exp(-2+a + P ) ,  
C3 = (g3/h 3, exp(- 1 + P ). 

~2 = (g2/h3) exp(-l + a ) ,  

(2.76) 
Defining the numerical flux vector 

( 2 . 8 ~ )  

where dwA denotes the absolute two-content of the momentum three-cell on the 
pseudosphere of radius mAc and A ' the unit time-like vector 
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we find 
CA = (NA(O)6 ) / [4 rm :c2K2(XA)1, XA = mAc6, ( 2 . 9 ~ )  

in which A determine the rest frame of the gas and NAcO, the numerical rest densities 
of the components of the gas; the Bessel function K,,(x) is defined for our purposes by 

m 

K, ( x )  = 1 exp(x cosh t )  cosh nt dt. 
0 

( 2 . 9 b )  

Combining ( 2 . 7 6 )  and ( 2 . 9 ~ )  we get 
2 

(2 .10 )  e N2(O)N3cO) - 477 g2g3 m m 3 c  K ~ ( x z ) K ~ ( x ~ )  

This equation constitutes the relativistic generalisation of the Saha ionisation equation 
for a perfect gas with the energy-momentum tensor 

IR = ( Nice) ) R  6h3 g i  ( ml K2(~1) ’ 

Trs = CA J prps exp(6A ‘Pr) d u a  
A 

where the effective temperature T is given by 

T = c / k (  

with k Boltzmann’s constant and c the velocity of light. 

(2 .11 )  

(2 .12 )  

3. Limiting cases 

We show first that (2 .14 )  reduces to the Saha ionisation equation for low effective 
temperature 

XA = m A c 2 / k T  ?> 1 for all components ( 3 . 1 )  

and then we investigate the cases when: 
(a) equation ( 3 . 1 )  is satisfied only for atoms and ions whereas for electrons x3<< 1 ;  
(b) equation (3 .1 )  is replaced by xA << 1 for all components, i.e. for very high 

effective temperature. 

3.1. The non-relativistic case 

When (3 .1 )  is satisfied for all components ( T  c l o 6  K )  we may approximate K2(xA) by 

K 2 ( X A )  (r/2XA)1’2 exp(-xA) ( 3 . 2 )  

and equation (2 .10)  yields 

where ,y is the ionisation energy such that 
2 ,y = ( m 2 + m 3 - m l ) c  . (3 .3b )  
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If, moreover, we assume m 2 / m l  = 1 ,  i.e. atom and ion masses comparable, we get the 
well known Saha ionisation equation 

3 /2  exp( - fi). = y ( 2 . r r m 3 k T )  def N ~ ~ O J N ~ I O J  g2g3 

I s  ( ) s  g l h  (3.4) 

3.2. The relativistic electrons case 

When the temperature lies between 10°K and 1012K, atoms and ions are non- 
relativistic whereas electrons are highly relativistic (x3 << 1 )  and 

K2(X3) 2/x: .  (3.5) 

We get, taking into account (3.5) and m l / m 2 =  1 ,  

3.3. The ultrarelativistic case 

When the effective temperature is very high (T  3 10°K) all particles are highly 
relativistic ( x A  << 1 ) .  Assuming m l / m 2  = 1 ,  we get the ultrarelativistic ionisation 
formula 

(3.7) 

4. Concluding remarks 

From (2.10),  (3 .3a)  and (3.4) we obtain the useful formula 

I R / I S  ' IR/INR=L2L3/Ll  (4.1) 
where L A  = K 2 ( ~ A ) ( 2 x A / . r r ) 1 / 2  eXA with x 1  = 1.087 x 1013T-', x2 = 1.086 x 1013T-' 
and x 3  = 5 . 9 2 9 ~  109T-' .  However, for temperatures between 10' K and lo lo  K ,  L 1  
and L 2  may be approximated to 1 so that such astrophysical situations include possibly 
cases where electrons are weakly relativistic. Using values of K 2 ( x )  from Abramowitz 
and Stegun (1964),  we may give as an illustration the following table. 

T io4 io6 10' 3 . 1 0 ~  io9 io1" IO'* 

I R I I s  1 1 1.03 1.09 1.34 5.76 3 . 5 ~  lo3 

It appears therefore that: 
(a) the usual Saha equation can be safely used below lo6 K ;  
(b) it remains valid to 3% for temperatures about 10' K ;  
(c) it is seriously incorrect beyond 109K as the relativistic Juttner distribution 

function should then be used for electrons. 
Beyond 10" K we have x3<< 0.1 and x:KZ(X3)':2 so that L3=0.1105 (10-9T)3/2;  
relativistic corrections are then very important, as the equilibrium electronic density 
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N3(0)  is also L3 times higher than the corresponding non-relativistic density. However, 
the above considerations apply only to the case of a perfect gas where particles interact 
by binary collisions. 
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